Introduction
Sparse vectors optimized for memory and NumPy integrations.
numpy
handles densely populated n-dimemsional arrays. scipy.sparse
handles sparsely populated 2-dimensional arrays, i.e., matrices. What's missing from the ecosystem is sparsely populated 1-dimensional arrays, i.e., vectors.
NumPy | Python | Spector |
---|---|---|
1-dim bool numpy.array |
set[int] |
spector.indices |
1-dim float numpy.array |
dict[int, float] |
spector.vector |
scipy.sparse.dok_matrix |
dict[int, dict[int, float]] |
spector.matrix |
Indices and vectors are implemented in Cython as hash sets and maps. All native operations are optimized and release the GIL.
- conversion between sparse
numpy
arrays - conversion between dense
numpy
arrays - binary set operations
- binary math operations
map
,filter
, andreduce
operations withnumpy
universal functions
Usage
indices
A sparse boolean array with a set interface.
>>> from spector import indices
>>> ind = indices([0, 2])
>>> ind
indices([2 0])
>>> 1 in ind
False
>>> ind.add(1)
True
>>> ind.todense()
array([ True, True, True])
>>> ind.fromdense(_)
indices([2 1 0])
vector
A sparse float array with a mapping interface.
>>> from spector import vector
>>> vec = vector({0: 1.0, 2: 2.0, 4: 1.0})
>>> vec
vector([4 2 0], [1. 2. 1.])
>>> vec[2] += 1.0
>>> vec[2]
3.0
>>> vec.todense()
array([1., 0., 3., 0., 1.])
>>> vector.fromdense(_)
vector([4 2 0], [1. 3. 1.])
>>> vec.sum()
5.0
>>> vec + vec
vector([0 2 4], [2. 6. 2.])
Vectors support math operations with scalars, and with vectors if the set method is unambiguous.
vector operation | set method | ufunc |
---|---|---|
+ |
union | add |
* |
intersection | multiply |
- |
subtract | |
/ |
true_divide | |
** |
power | |
\| |
union | max |
& |
intersection | min |
^ |
symmetric_difference | |
difference |
difference |
matrix
A mapping of keys to vectors.
>>> from spector import matrix
>>> mat = matrix({0: {1: 2.0}})
>>> mat
matrix(<class 'spector.vector.vector'>, {0: vector([1], [2.])})
>>> mat.row, mat.col, mat.data
(array([0]), array([1]), array([2.]))
Installation
% pip install spector
Tests
100% branch coverage.
% pytest [--cov]